

FOOD CHEMISTRY

Chapter 7 : Additives

7.1 DEFINITIONS AND CLASSIFICATION *The components of food*

A composite food can contain or result from the use of :

INGREDIENTS \longrightarrow Food or part of a food.

Examples: vegetable oil, whey proteins, salt

PROCESSING AIDS

Substances which are used to process or transform raw materials or foodstuffs and are usually extracted from the resulting product.

Examples: PVPP, bentonite, pectinases

ADDITIVES —> Substances that are added to foodstuffs for technological purposes and become a component of the finished product .

Examples: saccharine, benzoïc acid, potassium sulphite

7.1 DEFINITIONS AND CLASSIFICATION The role of food additives

To improve product conservation

- * Prevention of bacterial and fungal growth
- Delaying of spoilage
- * Extension of the shelf life
- * Delaying of rancidity or lipid oxidation
- Enhancement of stability

To improve sensory characteristics

- Improvement of texture
- * Enhancement of flavor (odour and taste)
- * Improvement, modification or stabilization of color

To modify nutritional properties

* Lowering of energy contents

7.1 DEFINITIONS AND CLASSIFICATION The Codex Alimentarius classes of food additives

Acids Flavour enhancers

Acidity regulators Foaming agents

Anticaking agents Gelling agents

Antifoaming agents Glazing agents

Antioxidants Humectants

Bulking agents Preservatives

Food colors Propellants

Colour retention agents Raising agents

Emulsifiers Stabilizers

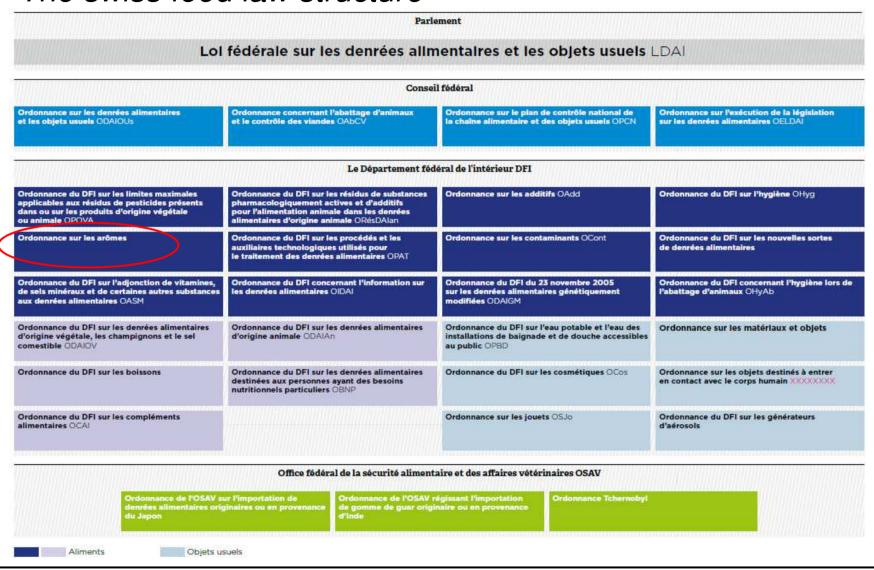
Emulsifying salts Sweeteners

Firming agents Thickeners

7.1 DEFINITIONS AND CLASSIFICATION The European Union numbering scheme

Class	Type of additives	Number of additives
E100 - E199	Colors	65
E200 – E299	Preservatives	57
E300 - E399	Antioxidants, acidity regulators	76
E400 - E499	Thickeners, stabilizers, emulsifiers	93
E500 - E599	Acidity regulators, anti-caking agents	70
E600 - E699	Flavor enhancers	22
E700 - E799	Antibiotics	16
E900 - E999	Miscellaneous	66
E1000 - E1599	Additional chemicals	49

7.1 DEFINITIONS AND CLASSIFICATION Additives and swiss food law


About 40 legal texts describing how food should be produced and marketed

Available at https://www.blv.admin.ch/blv/fr/home/lebensmittel-und-ernaehrung/rechts-und-vollzugsgrundlagen/gesetzgebung-lme.html

Examples:

817.0	Loi fédérale sur les denrées alimentaires et les objets usuels
817.022.41	Ordonnance sur les arômes
817.022.16	Ordonnance concernant l'information sur les denrées alimentaires
817.022.31	Ordonnance sur les additifs
817.023.31	Ordonnance sur les cosmétiques
817.024.1	Ordonnance sur l'hygiène

7.1 DEFINITIONS AND CLASSIFICATION The swiss food law structure

7.1 DEFINITIONS AND CLASSIFICATION Examples of additives limitations

Product	Code	Additive	Limit	Remarks		
Table salt	E535	Sodium ferrocyanide	20 mg/kg	Alone or sum of E 535, 536 and 538.		
	E536	Potassium ferrocyanide	20 mg/kg	Expressed as anhydrous sodium ferrocyanide		
	E538	Calcium ferrocyanide	20 mg/kg	Terrooyariide		
	-	Flavouring preparations	GMP			
	-	Flavours	GMP			
Meat	E129	Allura red AC	GMP	Only for marking and stamping		
	E133	Brilliant blue FCF	GMP			
	E155	Brown HT	GMP			

7.2 FOOD FLAVORS Flavor perceptions

Taste	Sweet	Smell	Natural flavoring substances
-------	-------	-------	------------------------------

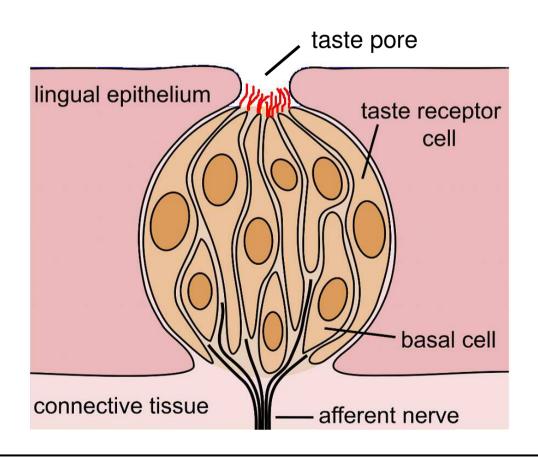
Sour Nature-identical flavoring substances

Bitter Artificial flavoring substances

Salty

Process flavoring substances (Maillard)
Umami

Smoke flavoring substances (Liquid smoke)

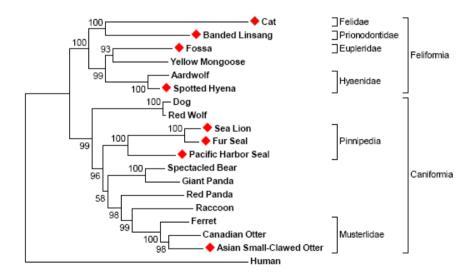

Further perceptions Coolness (menthol, camphor)

Dryness (tannins, oxalates)

Spicyness (chillies, pepper, ginger)

7.2 FOOD FLAVORS *Taste physiology*

Taste is due to ~ 5'000 taste buds, on the tongue and the palate. Lifetime of a receptor cell : 2-3 weeks

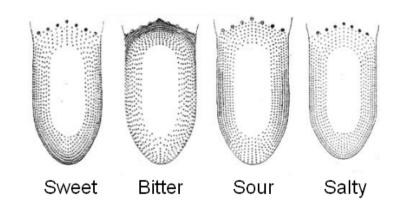

The plasma membrane of chemoreceptors sensitive to salinity and acidity have ion channels that these ions can penetrate. The entry of these species causes a depolarization of the receptor cell.

For umami, bitterness and sweetness receptors, the binding of tasty molecules opens the sodium or potassium channels and the Na⁺ or K⁺ ions diffuse into the cell, leading to depolarization.

7.2 FOOD FLAVORS Taste and evolution

Cats and other meat-or fish-eaters lack taste receptor gene Tas1r2

They are insensitive to sweet carbohydrates, which are not part of their diet

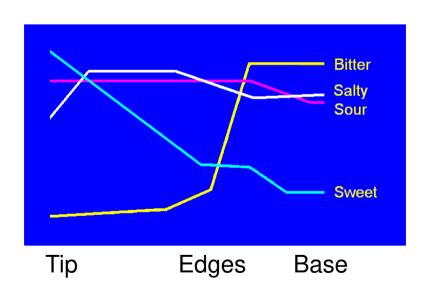


Major taste loss in carnivorous mammals. G.K. Beauchamp & al. PNAS 109, 4956-4961 (2012)

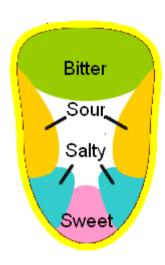
7.2 FOOD FLAVORS The tongue map myth (I)

In the early 20th century, a german physiologist published a paper on taste sensitivity (inverse detection threshold):

D.P. Hänig, Zur Psychophysik des Geschmackssinnes Philosophische Studien, 17, 576-623 (1901)


He showes that chemoperception thresholds were unequally distributed across the tongue. However:

- > The threshold differences were small
- > The differences between individuals were high
- Taste perception also existed in the middle of the tongue


7.2 FOOD FLAVORS The tongue map myth (II)

During World War II, the experimental psychologist Edwin Boring took Hänig's raw data and calculated real numbers for the levels of sensitivity.

E.G. Boring, Sensation and Perception in the History of Experimental Psychology Academic Press, New York, 1942

Data were plotted on a graph such that scientists assumed areas of lower sensitivity indicated no sensitivity at all. The tongue map was born!

7.2 FOOD FLAVORS The tongue map myth (III)

In 1974, Virginia Collings reinvestigated the topic, and concluded that all the tastes exist on all parts of the tongue. The tongue map was a urban legend!

V.B. Collings, Human Taste Response as a Function of Locus of Stimulation on the Tongue and Soft Palate.

Perception & Psychophysics, 16, 169-174 (1974)

7.2 FOOD FLAVORS The umami taste

Umami represents the taste of the amino acid L-glutamate and 5'-ribonucleotides such as inosine monophosphate.

Japanese broth *dashi* (miso) gives a very pure umami taste sensation because it is not based on meats. In dashi, glutamate comes from sea kombu (Laminaria japonica) and inosinate from dried bonito flakes.

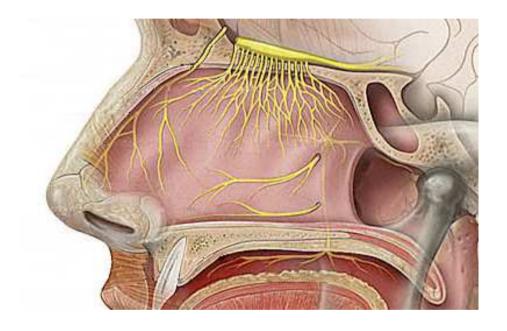
Kikunae Ikeda (1908)

The burning taste

Mechanical, thermal, and chemical stimuli are detected by nerve endings called nociceptors, which are found in the skin and on internal surfaces such as the mucosae. All nociceptors are free nerve endings.

7.2 FOOD FLAVORS The Scoville scale

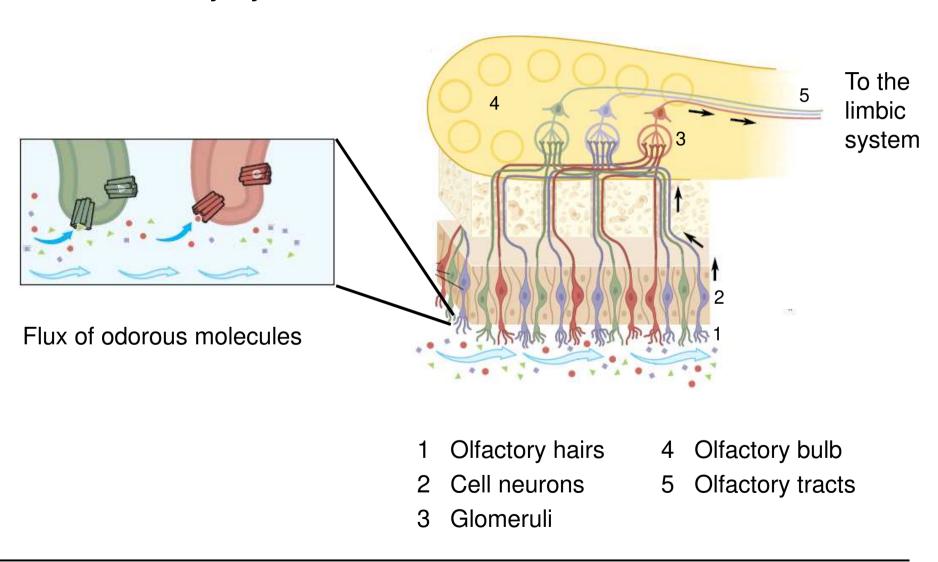
An alcohol extract of the product is added to a solution of sugar in water until the heat is just detectable. The degree of dilution gives its measure on the Scoville scale.


The American Spice Trade Association (ASTA) pungency units is an HPLC measure of the heat-producing chemicals.

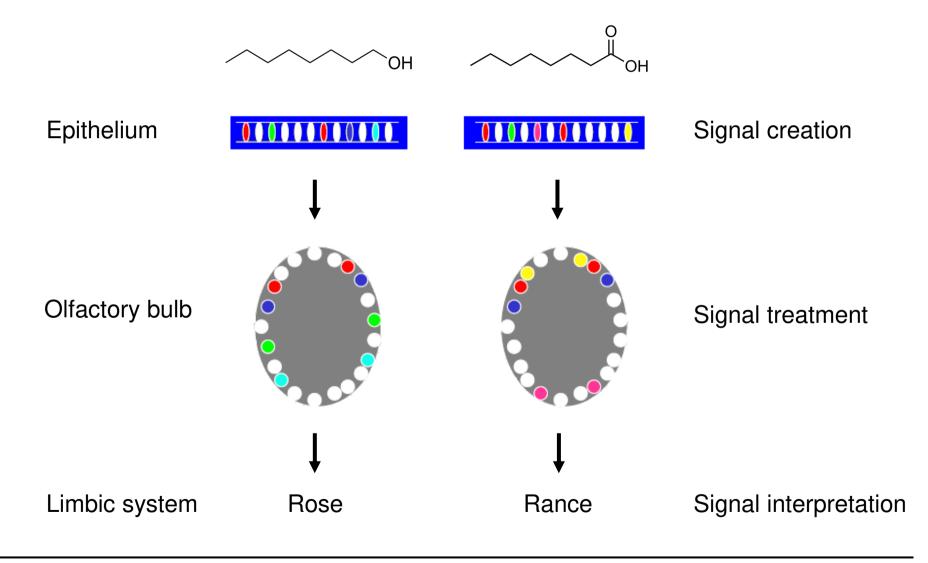
Wilbur Scoville 1912

	ı
16'000'000	Capsaïcine
1'500'000	Naga jolokia chili
600'000	Habanero chili
160'000	Shogaol
100'000	Thaï chili
60'000	Gingerol
40'000	Cayenne pepper
15'000	Serrano chili
2'000	Espelette chili
1'5000	Poblano chili
500	Paprika
0	Green pepper

7.2 FOOD FLAVORS The nasal cavity

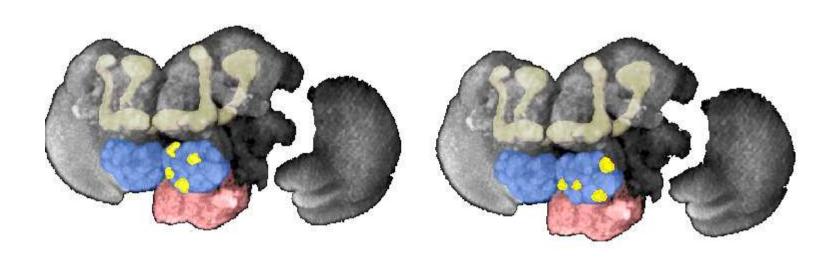

Olfactory receptors are directly connected to the brain!

The olfactory membrane covers 4 – 6 cm² in each nostril.


The human olfactory system contains an estimated 10⁸ receptor cells.

On average, olfactory receptors renew themselves every 30 days.

7.2 FOOD FLAVORS *The olfactory system*



7.2 FOOD FLAVORS *Odor responses*

7.2 FOOD FLAVORS Olfactory representations in fruit fly

Signal representations in olfactory bulb

Banana Cherry

7.2 FOOD FLAVORS Combinatorial identification of flavors

					///	[[]			///h				<i>[[]</i>		1
Odorant receptors	1	2	3	4	5	6	7	8	9				13	14	
Odorants															Description
А ~ Дон					0										rancid, sour, goat-like
В ~~~он						0									sweet, herbal, woody
С ~~~~°	0			0	0		0			O	O				rancid, sour, sweaty
D ~~~~oH		0			0	0									violet, sweet, woody
E ~~~~o _{OH}				0	0			(0	0	0			rancid, sour, repulsive
F ~~~~oH				0	0		0			0					sweet, orange, rose
G ✓✓✓ ОН Н ✓✓ ОН	0			0	0		0	(0		0		•	waxy, cheese, nut-like
H ~~~~oH				0	0		0			0		0			fresh, rose, oily floral

Flavor typology: Group 1a

Only one compound determines the aroma (« Character impact compound »)

Mushrooms

1-Octene-3-ol

Beetroot

Geosmine

Banana

Isopentyl acetate

Flavor typology: Group 1b

A limited number of compound determine the aroma

Blue cheese 2,3-Butanedione

Acetaldehyde

Dimethyl-disulfure

2-Heptanone

2-Nonanone

Tangerine Methyl anthranylate

Thymol

γ-Tepinene

α-Pinene

Flavor typology: Groups 2 and 3

Group 2

The aroma can only be simulated or reproduced with a large number of compounds

Examples: Coffee, tea, bread, apricot

Group 3

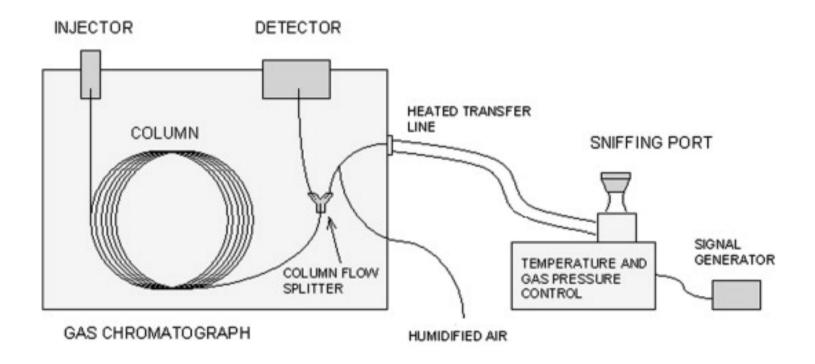
The aroma can not be satisfactorily reproduced even with a large number of compounds

Examples: Cocoa, beer, strawberry

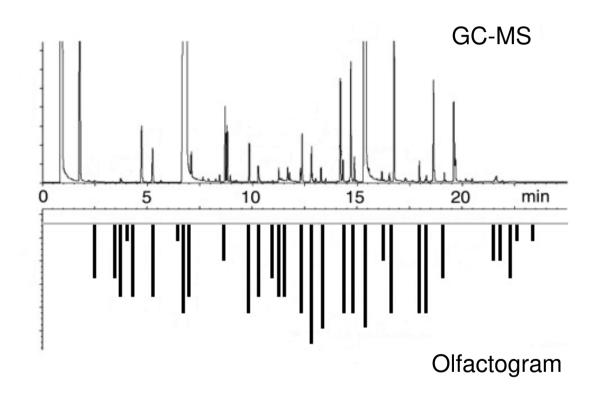
7.2 FOOD FLAVORS Effect of chirality on flavor perception

(+)-Nootkatone

Woody smell


LD = 600 mg/kg

(-)-Nootkatone


Grapefruit flavor

LD = 0.8 mg/kg

7.2 FOOD FLAVORS Olfactometric chromatography

7.2 FOOD FLAVORS *Olfactometric analysis*

Olfactometric evaluation of a Riesling – Sylvaner wine

7.2 FOOD FLAVORS *Artificial aromas*

7.2 FOOD FLAVORS *Odor threshold values*

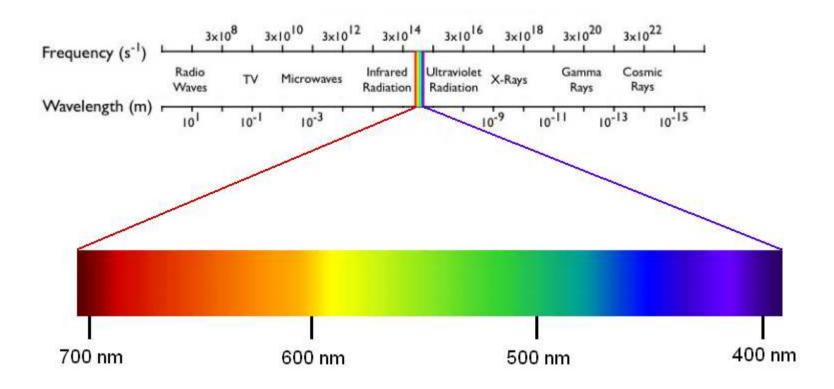
The lowest concentration of a compound that is just enough for its recognition

Compound	Aroma	OTV (mg/l) at 20°C in water
Maltol	Caramel	35
Vanillin	Vanilla	0.02
4-Hydroxyphenyl-butan-2-one	Raspberry	0.01
(+)-Nootkatone	Grapefruit	0.001
(-)-Nootkatone	Grapefruit	1.0
Filbertone	Hazelnut	0.00005
2-Isobutyl-3-methoxypyrazine	Green pepper	0.000002
1-Menthen-8-thiol	Grapefruit	0.0000005

7.2 FOOD FLAVORS Chemical interactions and food liking

Panel tasting showed that flavor intensity is related to 12 cpds, with 8 major contributors:

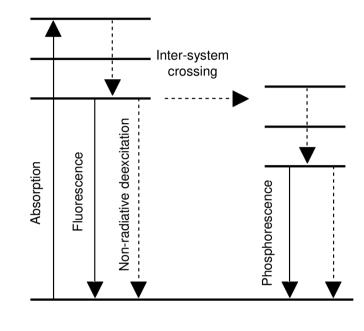
Fructose, isobutyl acetate, hexenol, citric acid, methyl butanol, methyl butanal, octenone, decadienal



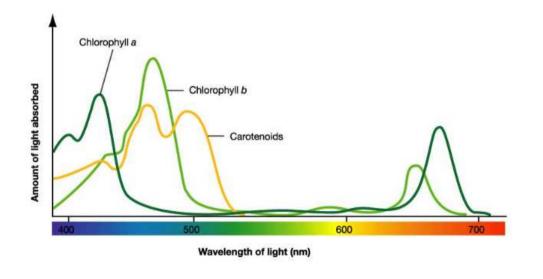
There is an interaction between retronasal olfaction and taste: volatile compounds enhance the sweet taste of tomatoes

The Chemical Interactions underlying Tomato Flavor Preferences D. Tieman & al., Current Biology **22**, 1-5 (2012)

7.3 FOOD COLORS The electromagnetic spectrum



7.3 FOOD COLORS The origins of the colors


True light sources Light emission

Fluorescence

Phosphorescence

Jablonsky diagram

Color of an object Reflectance

Diffraction

7.3 FOOD COLORS The natural colors

xanthophylls and chlorophylls β-carotene α-carotene

Porphyrins Meat, vegetables, leaves

Quinoïds Barks, roots, trees

Carotenoïds Vegetables, seafood

Anthocyans Flowers, fruits

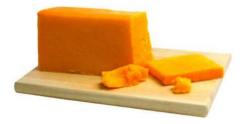
Betalaïns Red beets, berries

7.3 FOOD COLORS

Porphyrins: the structure of chlorophylls

7.3 FOOD COLORS

The carotenoids


7.3 FOOD COLORS *Annatto*

Bixa orellana (rocou)

Wax from dried seeds is extracted to obtain an extract rich in carotenoids, mainly α -bixin

Spontaneous isomerization

β-bixin (E160b)

Water insoluble!

7.3 FOOD COLORS *Norbixin*

Obtained through hydrolysis of bixin.

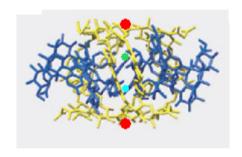
Salts are water soluble, whereas the dicarboxylic acid is insoluble.

Cereals for breakfeast are uniformly coloured with norbixin salts. After pH lowering, norbixin is formed *in situ* and cannot leach into added milk.

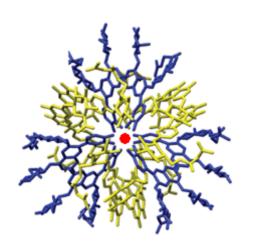
7.3 FOOD COLORS

The anthocyanins

The anthocyanins are glucosides of the anthocyanidins


Anthocyanidin	Basic structure	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇
Aurantinidin		-Н	-ОН	-Н	-OH	-OH	-OH	-OH
Cyanidin		-OH	-ОН	-Н	-OH	-OH	-H	-OH
Delphinidin	R_1	-OH	-он	-OH	-OH	-OH	-Н	-OH
Europinidin	R_2	-OCH ₃	-ОН	-OH	-OH	-OCH ₃	-Н	-OH
Luteolinidin	R_7 R_4 R_3	-OH	-OH	-Н	-Н	-OH	-Н	-OH
Pelargonidin		-H	-он	-Н	-OH	-OH	-Н	-OH
Mal√idin		-OCH ₃	-он	-OCH ₃	-OH	-OH	-Н	-OH
Peonidin	R_5	-OCH ₃	-он	-Н	-OH	-OH	-Н	-OH
Petunidin		-OH	-он	-OCH ₃	-OH	-OH	-Н	-OH
Rosinidin		-OCH ₃	-он	-Н	-OH	-OH	-Н	-OCH ₃

7.3 FOOD COLORS


The red cabbage cyanidin-3-glucoside as pH indicator

7.3 FOOD COLORS Anthocyanin supramolecular pigments

Willstätter (1915): red roses and blue cornflowers contain the same anthocyanin!

Dark blue: antocyanin (cyanidin 3,5 diglycoside)

Yellow: flavone (apigenin 7 glycoside)

Red: Ca2+

Green: Fe3+

Light blue: Mg2+

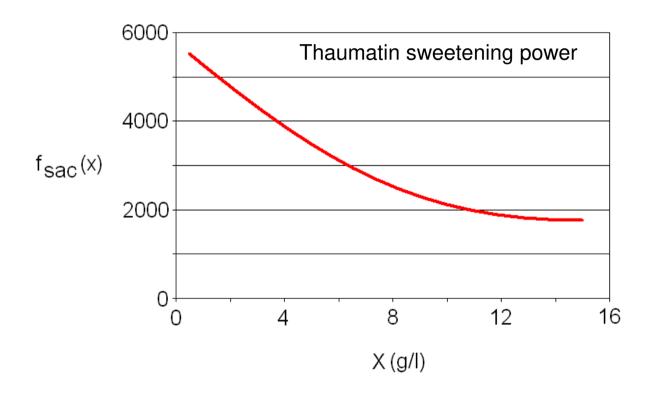
M. Shiono & al., Phytochemistry: Structure of the blue cornflower pigment Nature **436**, 791 (2005)

7.3 FOOD COLORS *The betalains*

Zur Konstitution des Randenfarbstoffes Betanin H. Wyler, A.S. Dreiding & al., Helv. Chim. Acta **42**, 1696-1698 (1959)

7.3 FOOD COLORS *The quinoïds*

Carminic acid E120


~ 20 % of the weight of dry cochineals!

7.3 FOOD COLORS The artificial colors

Common name	US Number	EU Number	Color Index
Brilliant Blue FCF	FD&C Blue Nr 1	E133	42090
Indigotine	FD&C Blue Nr 2	E132	73015
Fast Green FCF	FD&C Green Nr 3	E143	42043
Erythrosine B	FD&C Red Nr 3	E127	45430
Allura Red AC	FD&C Red Nr 40	E129	16035
Tartrazine	FD&C Yellow Nr 5	E102	19140
Sunset Yellow	FD&C Yellow Nr 6	E110	15985
Quinoline Yellow WS	Banned	E104	47005
Azorubin	Banned	E122	14720
Ponceau 4R	Banned	E124	16255
Amaranth	Banned	E123	16185
Patent Blue V	Banned	E131	42051
Green S	Banned	E142	44090
Brilliant Black BN	Banned	E151	28440
Brown HT	Banned	E155	20285
Litholrubine BK	Banned	E180	15850

7.4 FOOD SWEETENERS Sweetening power of sugar substitutes

The sweetening power is usually compared to saccharose.

 $f_{\text{sac},g}(10)$: sweetening power compared to a 10 g/l saccharose solution

7.4 FOOD SWEETENERS Some examples

Compound	$f_{sac,g}(10)$	DJA (mg/kg)	EU Nr
Saccharin	550	5	954
Cyclamate	35	7	952
Acesulfame-K	200	15	950
Sucralose	650	15	955
Aspartame	135	40	951
Neotame	> 7'000	2	961
Steviosides	300	4	-
Rebaudiosides	350	4	-
Hernandulcin	1'800	-	-
Thaumatin	2'000	GMP	957
Xylitol	1.0	GMP	967
Sorbitol	0.5	0.15 (laxative)	420

7.4 FOOD SWEETENERS Artificial sweeteners(I)

Saccharin (discovered 1879)

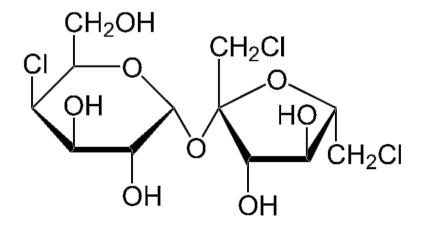
Stable at high temperatures and low pH

Has a metallic and bitter aftertaste

In 2010, EPA stated that it is not a potential hazard to human health

Cyclamate (discovered 1937)

Stable at high temperatures


Derived from sulfamic acid

Artificial sweeteners (II)

Acesulfame (discovered 1967)

Stable at high temperatures and low pH

Slightly bitter after taste at high concentrations

Sucralose (discovered 1976)

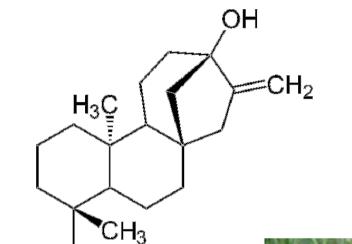
Very stable at high temperatures and low pH

7.4 FOOD SWEETENERS Artificial sweeteners (III)

Aspartame (discovered 1965)

Methyl ester of aspartyl-phenylalanine

Must be avoided by people suffering from phenylketonuria


Unstable at high temperatures and pH \neq 4.3

Neotame (discovered 1996)

neo-Hexyl group blocks peptidases activity

Most potent sweetener known

Natural sweeteners : Stevia rebaudiana Bert.

Plant contains several steviol glycosides:

5-10% stevioside

2-4% rebaudioside A

1-2% rebaudioside C

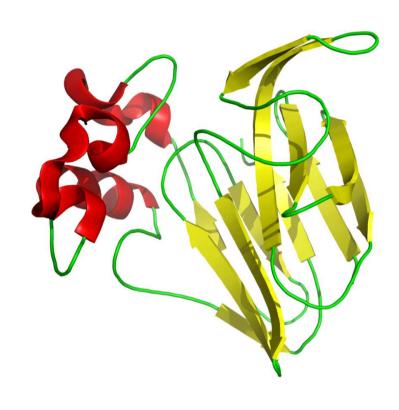
0–1% dulcoside A.

Steviol

For centuries, the Guaraní peoples of Paraguay used stevia as a sweetener in yerba mate and herbal teas.

HO

Natural sweeteners : Lippia dulcis Trev.


Hernandulcine (discovered in 1985)

Perennial herb native to Southern and Central America.

Two chemotypes of the plant were found, one with a significant amount of hernandulcine (hernandulcine chemotype), and one of camphor (camphor chemotype).

Natural sweeteners: Thaumatococcus danielli Benth.

Thaumatin I

Highly water soluble, stable to heating and acidic conditions (numerous sulphur bridges).

Arils of rhizomatous flowering herb native to the african rainforests.

Sweetness of thaumatin builds very slowly and perception lasts a long time.

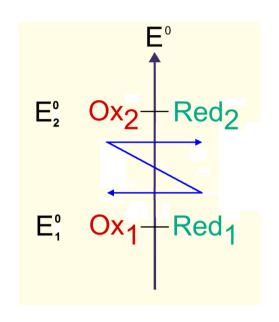
Natural sweeteners : polyols

Xylitol

Found in vegetable fibers

They produce a cooling sensation in the mouth, due to the strongly endothermic dissolution reaction.

Sorbitol


Found in fruits of the Rosaceae family (prunes) They present a laxative effect because they are not fully broken down during digestion.

Polyols are added to chewing gums because they are not metabolized by mouth bacteria, so they do not contribute to tooth decay.

7.5 ANTIOXIDANTS Definitions

The inverted-Z rule:

$$Ox_2 + Red_1 \longrightarrow Ox_1 + Red_2$$

In food:

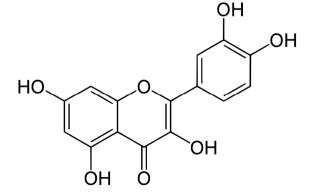
Antioxidants:

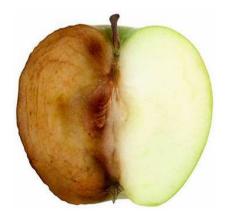
Redox reactions (browning)

Ascorbic acid, sulfites

Radical reactions (fat oxydation)

Tocols, BHA, BHT, gallates


7.5 ANTIOXIDANTS


Enzymatic browning

Polyphenoloxydase: copper-containing enzyme present in the membranes of vegetal cells (PPO)

Quercetin (flavonoid)

440 ppm in apples

7.5 ANTIOXIDANTS Antioxidant properties of sulfites

$$SO_2 + \frac{1}{2}O_2 \longrightarrow SO_3$$

Oxygen scavenging

$$SO_3 + H_2O \longrightarrow HSO_4^- + H^+$$

Reactions with carbonyl species

Oxidation products scavenging

Untreated organic dried apricots

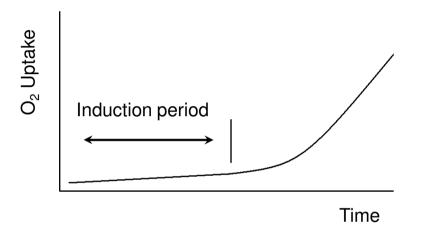
SO₂ treated dried apricots

7.5 ANTIOXIDANTS

Antioxidant properties of ascorbic acid

Oxidation products scavenging

Dehydroascorbic acid


7.5 ANTIOXIDANTS

Antioxidant properties of substituted phenolic compounds

7.5 ANTIOXIDANTS Antioxidant properties of tocopherols

Tocopherols (vitamin E) are important to prevent oxidation of polyunsaturated fatty acids

7.5 ANTIOXIDANTS Antioxidative factors (AF)

Antioxidative factors of some antioxidants at 0.02% in refined lard

$$AF = I_A / I_0$$

I_A: Induction period with antioxidant

I₀: Induction period without antioxidant

Antioxidant	AF
α - Tocopherol	5
γ - Tocopherol	12
ВНА	10
BHT	6
Octyl gallate	6
BAH + BHT	12

7.5 ANTIOXIDANTS Antioxidant supplements and health

Meta-analysis including 78 randomised clinical trials.

296,707 participants were randomised to antioxidant supplements (β-carotene, vitamin A, vitamin C, vitamin E, and selenium) vs. placebo or no intervention

Twenty-six trials included 215,900 healthy participants. Fifty-two trials included 80,807 participants with various diseases.

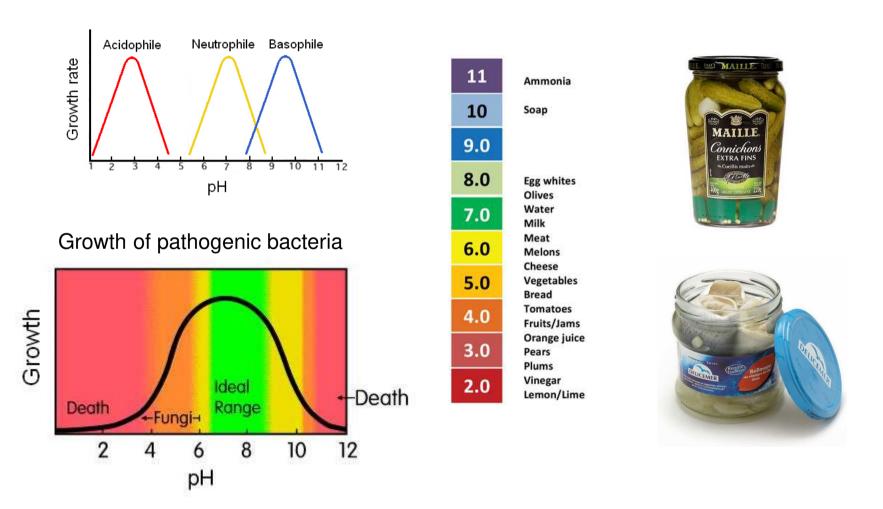
- No statistical significance in terms of mortality!
- For the trials with low risks of bias, the increased mortality in supplemented participants was even more pronounced, 1.04 times as compared to the controls (RR = 1.05, IC 95 % 1.02-1.08).

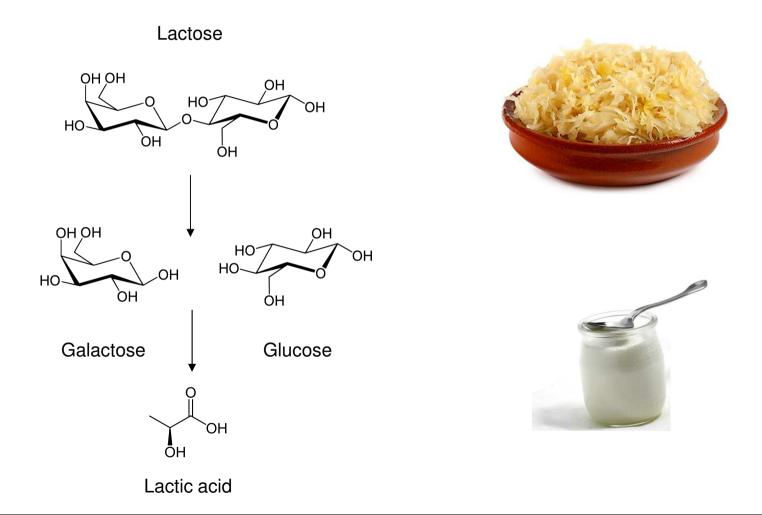
G. Bjelakovic & al., Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases.

Cochrane Database of Systematic Reviews 2012 (3), No. 7176

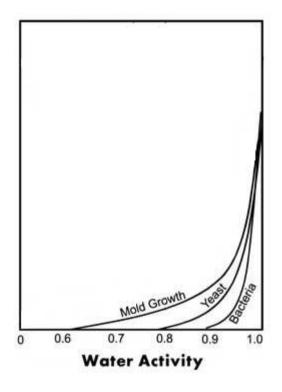
7.6 PRESERVATIVES Definitions

Preservation prevents the growth of unwanted bacteria, yeasts, and fungi


Physical or chemical treatment that kills microorganisms

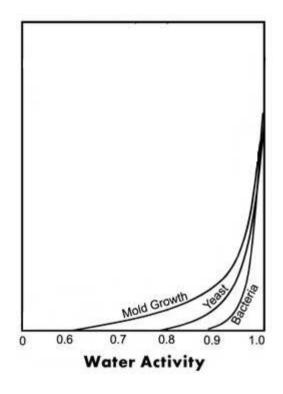

Removal of nutrients needed by microorganisms

Parameter	Application
High temperature	Heating
Low temperature	Chilling, freezing
High pressure	Pascalization
Low water activity	Drying, curing, smoking, sugaring
High ionising radiations	Irradiation
High acidity	Acid addition, fermentation
Low oxygen concentration	Vacuum packing, controlled atmosphere
Cell perturbation	Chemical preservatives


7.6 PRESERVATIVES Natural preservatives: acetic acid

Natural preservatives : lactic acid

Natural preservatives : salt


NaCl (g)	Water (g)	% NaCl	A _w
0.9	99.1	0.9	0.995
1.7	98.3	1.7	0.99
3.5	96.5	3.5	0.98
7.0	93.0	7.0	0.96
10.0	90.0	10.0	0.94
13.0	87.0	13.0	0.92
16.0	84.0	16.0	0.90
22.0	78.0	22.0	0.86

Natural preservatives : saccharose

Sucrose (g)	Water (g)	% Sucrose	A _w
0	100	0	1.00
20	100	16.7	0.998
40	100	28.6	0.969
60	100	37.5	0.955
80	100	44.4	0.941
100	100	50.0	0.927
120	100	54.5	0.913
140	100	58.3	0.900
160	100	61.5	0.888
180	100	64.3	0.876
200	100	66.7	0.860

Natural preservatives : hop extract

Humulone

Cis- and trans-isohumulones

Antimicrobial properties

Concentrated hop extracts were added to english beer to prevent spoilage during transport in the colonies (« India pale ale »)

7.6 PRESERVATIVES Preservatives allowed in the European union

Hexamethylenetetramine	Sorbic acid and salts
Ethanol	Benzoic acid and salts
Nisin	p-Hydroxybenzoic acid and salts and esters
Natamycin	Boric acid and salts
Lysozyme	Borax
Formic acid and salts	Nitrites and nitrates
Acetic acid and salts	Sulfur dioxide and related compounds
Propionic acid and salts	

7.6 PRESERVATIVES Sorbic acid (I)

Inhibits the grows of molds and yeasts

In wine, can produce a geranium leaf off-flavor

7.6 PRESERVATIVES Sorbic acid (II)

In presence of spoilage bacteria, can undergo a decarboxylation

7.6 PRESERVATIVES Diethyl dicarbonate (DEDC)

In acidic media, causes complete destruction of yeasts in less than 60 minutes

Mainly used in beer, wine and fruit juices

Inactivates RNase enzymes (also used in biochemistry)